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Abstract
It is shown that the potential of an electrostatic or magnetostatic 2l-pole can
be expressed as the composition of l directional derivatives of the function 1/r

along l directions, not necessarily distinct.

PACS numbers: 41.20.Cv, 41.20.Gz

1. Introduction

The 2l-pole moment of an electric charge distribution is represented by a tracefree totally
symmetric l-index tensor which has 2l + 1 independent components (see, e.g., [1–5]). (A
tensor is tracefree if all its traces are equal to zero, see equation (5).) In particular, the dipole
moment is represented by a vector, p, and its contribution to the electrostatic potential is

1

4πε0

p · r
r3

= − 1

4πε0
p · ∇ 1

r
. (1)

Noting that p · ∇(1/r) is the directional derivative of 1/r along the direction of p and writing
p = qa, where q is some positive quantity with units of electric charge and a = p/q is a vector
parallel to p, we have

−p · ∇ 1

r
= q(−a) · ∇ 1

r
= q lim

s→0

1

s

[
1

|r − sa| − 1

|r|
]

= lim
s→0

[
q/s

|r − sa| − q/s

|r|
]

which corresponds to the well-known fact that the dipole field (1) is equal to the limit as s goes
to zero of the field produced by a point charge −q/s placed at the origin and a point charge
q/s at the point sa.

Similarly, it can be shown that the directional derivative of the dipole field (1) along any
direction is exactly a quadrupole field and, more generally, any directional derivative of a
2l-pole field is a 2l+1-pole field. The aim of this paper is to show that for an arbitrary bounded
electric charge or current distribution and for any value of l (l = 1, 2, 3, . . .), there exist l
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vectors, a, b, . . . , f, not necessarily distinct, such that the 2l-pole term of the electrostatic or
magnetostatic potential is given by

(−1)l(a · ∇)(b · ∇) · · · (f · ∇)
1

r
. (2)

The vectors a, b, . . . , f can be chosen in such a way that they all have the same magnitude
and, therefore, their common magnitude (one real number) and the two variables specifying
the direction of each of the l vectors a, b, . . . , f, give 2l + 1 independent real numbers that
determine the 2l-pole term of the potential. According to equation (2), the quadrupole term,
for instance, is equivalent to the limit as s goes to zero of the field of two dipoles, one with
dipole moment −a/s at the origin and another with dipole moment a/s at the point sb.

Expression (2) follows from the fact that any tracefree totally symmetric l-index tensor
can be expressed as the tracefree part of the symmetrized tensor product of l vectors [6, 7].
An elementary proof of this result, for the case where l = 2, is given below.

The usefulness of expression (2) comes from the fact that, instead of making use of
Cartesian tensors or spherical harmonics, it only involves ordinary vectors and provides a
simple way of viewing any multipole moment of an arbitrary charge or current distribution as
a set of vectors.

In section 2 the multipole expansion of the electrostatic field is considered and in section 3
an analogous treatment for the magnetostatic field is given, where we also present a simple
derivation of the expression for the multipole moments of a current distribution.

2. Multipole expansion of the electrostatic field

By expanding the function |r − r′|−1 in a power series, one finds that the (external) potential
of a bounded static electric charge distribution is given by

φ(r) = 1

4πε0

[
1

r

∫
ρ(r′) dv′ +

xi

r3

∫
ρ(r′)x ′

i dv′ +
xixj

2r5

∫
ρ(r′)(3x ′

ix
′
j − r ′2δij ) dv′

+
xixjxk

2r7

∫
ρ(r′)(5x ′

ix
′
j x

′
k − r ′2x ′

iδjk − r ′2x ′
j δki − r ′2x ′

kδij ) dv′ + · · ·
]

(3)

where xi and x ′
i are the Cartesian components of r and r′, respectively, r = |r|, r ′ = |r′|, ρ is

the electric charge density. Throughout this paper each repeated index in a product i, j, k, . . .

implies a summation over 1, 2, 3. The integrals in equation (3) and in the expressions below
are over all the space or, since the charge or current distribution is bounded, over the region
containing the sources of the field. The multipole expansion (3) is of the form

φ(r) = 1

4πε0

∞∑
l=0

1

r2l+1
xixj · · · xp︸ ︷︷ ︸

l factors

M
(l)
ij ···p (4)

where M
(l)
ij ···p is a tracefree totally symmetric l-index tensor, i.e., M(l)

ij ···r···s···p = M
(l)
ij ···s···r···p and

M
(l)
ij ···s···s···p = 0 (l � 2). (5)

By comparing with equation (3) one finds that the lowest multipole moments are given by

M(0) =
∫

ρ(r′) dv′ M
(1)
i =

∫
ρ(r′)x ′

i dv′

M
(2)
ij = 1

2

∫
ρ(r′)(3x ′

ix
′
j − r ′2δij ) dv′

M
(3)
ijk = 1

2

∫
ρ(r′)(5x ′

ix
′
j x

′
k − r ′2x ′

iδjk − r ′2x ′
j δki − r ′2x ′

kδij ) dv′.

The components M
(1)
i and 2M

(2)
ij are usually denoted as pi and Qij , respectively [1–3].
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On the other hand, one finds that, for r �= 0,

∂

∂xi

1

r
= − xi

r3

∂

∂xj

∂

∂xi

1

r
= 3xixj

r5
− δij

r3

∂

∂xk

∂

∂xj

∂

∂xi

1

r
= −15xixjxk

r7
+

3xkδij

r5
+

3xj δik

r5
+

3xiδjk

r5
, . . .

therefore, making use of (5), equation (4) can also be expressed as

φ(r) = 1

4πε0

∞∑
l=0

(−1)l

(2l − 1)!!
M

(l)
ij ···p

∂

∂xi

∂

∂xj

· · · ∂

∂xp

1

r
(6)

(with (−1)!! ≡ 1). It may be noted that [4]

M
(l)
ij ···p = (−1)l

l!

∫
ρ(r′)r ′2l+1 ∂

∂x ′
i

∂

∂x ′
j

· · · ∂

∂x ′
p

1

r ′ dv′.

Even though, for l > 1, not every l-index tensor is equal to the tensor product of l vectors,
it turns out that every tracefree totally symmetric l-index tensor is equal to the tracefree part of
the symmetrized tensor product of l vectors [6, 7]. For instance, if Qij is a tracefree symmetric
2-index tensor, then there exist two vectors, vi, wi , such that

Qij = 1
2 (viwj + vjwi) − 1

3 (v · w)δij .

Indeed, as is well known, if (Qij ) is a symmetric 3 × 3 real matrix then there exists an
orthonormal basis {a, b, c}, formed by normalized eigenvectors of (Qij ), such that

Qij = λaiaj + µbibj + νcicj (7)

where λ,µ and ν are the corresponding eigenvalues, which are all real. If the trace of (Qij ) is
equal to zero, then λ + µ + ν = 0. Furthermore, the condition that {a, b, c} is an orthonormal
basis is equivalent to aiaj + bibj + cicj = δij , thus, from (7), we have

Qij = (2λ + µ)aiaj + (2µ + λ)bibj − (λ + µ)δij . (8)

If now we assume that λ and µ are the greatest and the smallest eigenvalues of (Qij ),
respectively, then 2λ + µ and (−2µ − λ) are greater than or equal to zero. Letting

v ≡
√

2λ + µ a +
√

−2µ − λ b w ≡
√

2λ + µ a −
√

−2µ − λ b (9)

from (8) one obtains

Qij = 1
2 (viwj + vjwi) − 1

3 (v · w)δij (10)

as stated above. Since {a, b, c} is an orthonormal basis, it follows from (9) that |v|2 = |w|2 =
λ − µ. Equation (10) means that any tracefree symmetric tensor Qij is the tracefree part of
the symmetrized tensor product of two vectors of the same length.

From equations (9) we see that v and w are parallel to each other (i.e., v = ±w) if and
only if 2µ+λ = 0 or 2λ+µ = 0. Recalling that λ+µ+ν = 0, this means that ν = µ or ν = λ,
respectively. Thus, v and w are parallel to each other if and only if two of the eigenvalues of
(Qij ) coincide.

It turns out that a result similar to (10) holds for tracefree symmetric tensors with any
number of indices. If tij ···k is a totally symmetric tracefree l-index tensor, then there exist l
vectors of the same length, a, b, . . . , f, such that tij ···k is the tracefree part of the symmetrized
tensor product of a, b, . . . , f. The proof of this fact in general, which at the same time provides
a method to find the vectors a, b, . . . , f, is given in [6, 7] making use of the two-component
spinor formalism.
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Another characterization of the vectors a, b, . . . , f is that if the z-axis coincides with one
of the vectors a, b, . . . , f, then the spherical multipole moment [1, 2] qll vanishes [5] (in the
case of the quadrupole moment, Qij , this amounts to Q11 − Q22 − 2iQ12 = 0).

Among other things, this means that, in the same way as the dipole moment can be
represented by a vector, the quadrupole moment can be represented by two vectors of the same
length (not necessarily distinct), the octopole moment can be represented by three vectors of
the same length, and so on.

According to the foregoing results, the quadrupole moment M
(2)
ij can be expressed in the

form M
(2)
ij = 1

2 (viwj + vjwi) − 1
3 (v · w)δij , for some vectors vi and wi ; therefore, apart from

the factor 1/(4πε0), the quadupole term in equation (6) can be written as

1

3

[
1

2
(viwj + vjwi) − 1

3
(v · w)δij

]
∂

∂xi

∂

∂xj

1

r
= 1

3
vi

∂

∂xi

wj

∂

∂xj

1

r
= 1

3
(v · ∇)(w · ∇)

1

r

since ∇2(1/r) = 0, for r �= 0. In a similar manner, the field of a 2l-pole is of the form

(−1)l

4πε0
(a · ∇)(b · ∇) · · · (f ·∇)

1

r

for some vectors a, b, . . . , f, which can be chosen in such a way that they all have the same
magnitude.

3. Multipole expansion of the magnetostatic field

The magnetic field produced by a bounded stationary electric current distribution also has a
multipole expansion and, for l > 1, the magnetic field produced by a magnetic 2l-pole moment
is of the same form as the electric field produced by an electric 2l-pole moment [1–5]. At a
point outside an sphere centred at the origin containing the current distribution, the magnetic
field can be expressed in the form B = −∇φM and the magnetic scalar potential, φM, has a
multipole expansion similar to that given by equations (4) or (6) (with M(0) = 0), namely

φM(r) = µ0

4π

∞∑
l=1

1

r2l+1
xixj · · · xp︸ ︷︷ ︸

l factors

M
(l)
ij ···p

= µ0

4π

∞∑
l=1

(−1)l

(2l − 1)!!
M

(l)
ij ···p

∂

∂xi

∂

∂xj

· · · ∂

∂xp

1

r
(11)

where now M
(l)
ij ···p is a tracefree totally symmetric l-index tensor given by an integral containing

the electric current density, J. For instance

M
(1)
i = 1

2

∫
(r′ × J(r′))i dv′ M

(2)
ij =

∫
(r′ × J(r′))(ix ′

j) dv′ (12)

where the parentheses denote symmetrization on the indices enclosed (e.g., t(ij) = 1
2 (tij + tj i)).

In general, M
(l)
ij ···p is the tracefree part of the symmetric tensor [4, 5]

(2l − 1)!!

(l − 1)!(l + 1)

∫
(r′ × J(r′))(ix ′

j · · · x ′
p) dv′. (13)

Indeed, starting from the elementary expression [1–3]

B(r) = µ0

4π

∫
J(r′) × (r − r′)

|r − r′|3 dv′
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for the field produced by the current density J, noting that (r − r′) · J(r′) × (r − r′) = 0, we
have

r · B(r) = µ0

4π

∫
r′ · J(r′) × (r − r′)

|r − r′|3 dv′ = µ0

4π

∫
(r′ × J(r′)) · ∇′ 1

|r − r′| dv′.

Hence, using again the expansion of |r − r′|−1 and writing B = −∇φM, it follows that

−r
∂φM

∂r
= µ0

4π

∫
(r′ × J(r′)) · ∇′

[
1

r
+

r · r′

r3
+

3(r · r′)2 − r2r ′2

2r5
+ · · ·

]
dv′

which leads to the expression

φM = µ0

4π

[
xi

2r3

∫
(r′ × J(r′))i dv′ +

xixj

r5

∫
(r′ × J(r′))ix ′

j dv′ + · · ·
]

(cf (3)). Since this last expression is a solution of the Laplace equation, it gives, up to a
constant term, the desired scalar potential. Then, comparison with (11) yields equations (12).

As in the case of the multipole expansion of the electrostatic field, the fact that the
Cartesian multipole moments M

(l)
ij ···p appearing in equation (11) are totally symmetric and

tracefree, implies that the field of a magnetic 2l-pole is of the form

µ0

4π
(−1)l(a · ∇)(b · ∇) · · · (f · ∇)

1

r

where a, b, . . . , f are l vectors of the same magnitude.
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